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The Rubik’s cube is a classic combinatorial puzzle that poses 
unique and interesting challenges for artificial intelligence 
and machine learning. Although the state space is excep-

tionally large (4.3 × 1019 different states), there is only one goal 
state. Furthermore, the Rubik’s cube is a single-player game and 
a sequence of random moves, no matter how long, is unlikely to 
end in the goal state. Developing machine learning algorithms to 
deal with this property of the Rubik’s cube might provide insights 
into learning to solve planning problems with large state spaces. 
Although machine learning methods have previously been applied 
to the Rubik’s cube, these methods have either failed to reliably solve 
the cube1–4 or have had to rely on specific domain knowledge5,6. 
Outside of machine learning methods, methods based on pattern 
databases (PDBs) have been effective at solving puzzles such as the 
Rubik’s cube, the 15 puzzle and the 24 puzzle7,8, but these methods 
can be memory-intensive and puzzle-specific.

More broadly, a major goal in artificial intelligence is to create 
algorithms that are able to learn how to master various environ-
ments without relying on domain-specific human knowledge. The 
classical 3 × 3 × 3 Rubik’s cube is only one representative of a larger 
family of possible environments that broadly share the characteris-
tics described above, including (1) cubes with longer edges or higher 
dimension (for example, 4 × 4 × 4 or 2 × 2 × 2 × 2), (2) sliding tile 
puzzles (for example the 15 puzzle, 24 puzzle, 35 puzzle and 48 puz-
zle), (3) Lights Out and (4) Sokoban. As the size and dimensions are 
increased, the complexity of the underlying combinatorial problems 
rapidly increases. For example, while finding an optimal solution 
to the 15 puzzle takes less than a second on a modern-day desktop, 
finding an optimal solution to the 24 puzzle can take days, and find-
ing an optimal solution to the 35 puzzle is generally intractable9. 
Not only are the aforementioned puzzles relevant as mathematical 
games, but they can also be used to test planning algorithms10 and 
to assess how well a machine learning approach may generalize to 
different environments. Furthermore, because the operation of the 
Rubik’s cube and other combinatorial puzzles are deeply rooted 
in group theory, these puzzles also raise broader questions about 
the application of machine learning methods to complex symbolic 
systems, including mathematics. In short, for all these reasons, the 
Rubik’s cube poses interesting challenges for machine learning.

To address these challenges, we have developed DeepCubeA, 
which combines deep learning11,12 with classical reinforcement 
learning13 (approximate value iteration14–16) and path finding meth-
ods (weighted A* search17,18). DeepCubeA is able to solve combi-
natorial puzzles such as the Rubik’s cube, 15 puzzle, 24 puzzle, 35 
puzzle, 48 puzzle, Lights Out and Sokoban (Fig. 1). DeepCubeA 
works by using approximate value iteration to train a deep neural 
network (DNN) to approximate a function that outputs the cost  
to reach the goal (also known as the cost-to-go function). Given  
that random play is unlikely to end in the goal state, DeepCubeA 
trains on states obtained by starting from the goal state and  
randomly taking moves in reverse. After training, the learned  
cost-to-go function is used as a heuristic to solve the puzzles using 
a weighted A* search17–19.

DeepCubeA builds on DeepCube20, a deep reinforcement 
learning algorithm that solves the Rubik’s cube using a policy and 
value function combined with Monte Carlo tree search (MCTS). 
MCTS, combined with a policy and value function, is also used by 
AlphaZero, which learns to beat the best existing programs in chess, 
Go and shogi21. In practice, we find that, for combinatorial puzzles, 
MCTS has relatively long runtimes and often produces solutions 
many moves longer than the length of a shortest path. In contrast, 
DeepCubeA finds a shortest path to the goal for puzzles for which a 
shortest path is computationally verifiable: 60.3% of the time for the 
Rubik’s cube and over 90% of the time for the 15 puzzle, 24 puzzle 
and Lights Out.

Deep approximate value iteration
Value iteration15 is a dynamic programming algorithm14,16 that  
iteratively improves a cost-to-go function J. In traditional value 
iteration, J takes the form of a lookup table where the cost-to- 
go J(s) is stored in a table for all possible states s. However, this 
lookup table representation becomes infeasible for combinatorial 
puzzles with large state spaces like the Rubik’s cube. Therefore, 
we turn to approximate value iteration16, where J is represented by  
a parameterized function implemented by a DNN. The DNN is 
trained to minimize the mean squared error between its estima-
tion of the cost-to-go of state s, J(s), and the updated cost-to-go  
estimation J′(s):
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′ = +J s g s A s a J A s a( ) min ( ( , ( , )) ( ( , ))) (1)a
a

where A(s, a) is the state obtained from taking action a in state s and 
ga(s, s′) is the cost to transition from state s to state s′ taking action 
a. For the puzzles investigated in this Article, ga(s, s′) is always 1. 
We call the resulting algorithm ‘deep approximate value iteration’ 
(DAVI).

We train on a state distribution that allows information to propa-
gate from the goal state to all the other states seen during train-
ing. Our method of achieving this is simple: each training state xi is 
obtained by randomly scrambling the goal state ki times, where ki is 
uniformly distributed between 1 and K.

Although the update in equation (1) is only a one-step lookahead, 
it has been shown that, as training progresses, J approximates the opti-
mal cost-to-go function J* (ref. 16). This optimal cost-to-go function 
computes the total cost incurred when taking a shortest path to the 
goal. Instead of equation (1), multi-step lookaheads such as a depth-N 
search or Monte Carlo tree search can be used. We experimented with 
different multi-step lookaheads and found that multi-step lookahead 
strategies resulted in, at best, similar performance to the one-step loo-
kahead used by DAVI (see Methods for more details).

Batch weighted A* search
After learning a cost-to-go function, we can then use it as a heuris-
tic to search for a path between a starting state and the goal state. 
The search algorithm that we use is a variant of A* search17, a best-
first search algorithm that iteratively expands the node with the  
lowest cost until the node associated with the goal state is selected 
for expansion. The cost of each node x in the search tree is  

determined by the function f(x) = g(x) + h(x), where g(x) is the path 
cost, which is the distance between the starting state and x, and h(x) 
is the heuristic function, which estimates the distance between x 
and the goal state. The heuristic function h(x) is obtained from the 
learned cost-to-go function:






=h x
x

J x
( )

0 if is associated with the goal state
( ) otherwise

(2)

We use a variant of A* search called weighted A* search18. 
Weighted A* search trades potentially longer solutions for 
potentially less memory usage by using, instead, the function 
f(x) = λg(x) + h(x), where λ is a weighting factor between zero and 
one. Furthermore, using a computationally expensive model for the 
heuristic function h(x), such as a DNN, could result in an intracta-
bly slow solver. However, h(x) can be computed for many nodes in 
parallel by expanding the N lowest cost nodes at each iteration. We 
call the combination of A* search with a path-cost coefficient λ and 
batch size N ‘batch weighted A* search’ (BWAS).

In summary, the algorithm presented in this Article uses DAVI 
to train a DNN as the cost-to-go function on states whose difficulty 
ranges from easy to hard. The trained cost-to-go function is then 
used as a heuristic for BWAS to find a path from any given state to 
the goal state. We call the resulting algorithm DeepCubeA.

Results
To test the approach, we generate a test set of 1,000 states by ran-
domly scrambling the goal state between 1,000 and 10,000 times. 
Additionally, we test the performance of DeepCubeA on the three 
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Fig. 1 | Visualization of scrambled states and goal states. Visualization of a scrambled state (top) and the goal state (bottom) for four puzzles 
investigated here.

Table 1 | Comparison of DeepCubeA with optimal solvers based on PDBs along the dimension of solution length, percentage of 
optimal solutions, number of nodes generated, time taken to solve the problem and number of nodes generated per second on the 
Rubik’s cube states that are furthest away from the goal

Puzzle Solver Length Percentage of optimal solutions No. of nodes Time taken (s) Nodes per second

Rubik’s cubeh PDBs7 – – – – –

PDBs+24 26.00 100.0 2.41 × 1010 13,561.27 1.78 × 106

DeepCubeA 26.00 100.0 5.33 × 106 18.77 2.96 × 105

PDBs+ refer to Rokicki’s optimal solver, which uses PDB combined with knowledge of group theory24,25. DeepCubeA finds a shortest path to the goal for all of the states furthest away from the goal.
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known states that are the furthest possible distance away from the 
goal (26 moves)22. To assess how often DeepCubeA finds a shortest 
path to the goal, we need to compare our results to a shortest path 
solver. We can obtain a shortest path solver by using an iterative 
deepening A* search (IDA*)23 with an admissible heuristic com-
puted from a PDB. Initially, we used the PDB described in Korf ’s 
work on finding optimal solutions to the Rubik’s cube7; however, 
this solver only solves a few states a day. Therefore, we use the opti-
mal solver that was used to find the maximum of the minimum 
number of moves required to solve the Rubik’s cube from any given 
state (so-called ‘God’s number’)24,25. This human-engineered solver 
relies on large PDBs26 (requiring 182 GB of memory) and sophisti-
cated knowledge of group theory to find a shortest path to the goal 
state. Comparisons between DeepCubeA and shortest path solvers 
are shown later in Table 5.

The DNN architecture consists of two fully connected hidden 
layers, followed by four residual blocks27, followed by a linear out-
put unit that represents the cost-to-go estimate. The hyperparam-
eters of BWAS were chosen by doing a grid search over λ and N on 
data generated separately from the test set (see Methods for more 
details). When performing BWAS, the heuristic function is com-
puted in parallel across four NVIDIA Titan V graphics processing 
units (GPUs).

Performance. DeepCubeA finds a solution to 100% of all test 
states. DeepCubeA finds a shortest path to the goal 60.3% of the 
time. Aside from the optimal solutions, 36.4% of the solutions are 
only two moves longer than the optimal solution, while the remain-
ing 3.3% are four moves longer than the optimal solution. For the 
three states that are furthest away from the goal, DeepCubeA finds 
a shortest path to the goal for all three states (Table 1). Although 
we relate the performance of DeepCubeA to the performance of 
shortest path solvers based on PDBs, a direct comparison cannot be 
made because shortest path solvers guarantee an optimal solution 
while DeepCubeA does not.

Although PDBs can be used in shortest path solvers, they 
can also be used in BWAS in place of the heuristic learned by 

DeepCubeA. We use Korf ’s PDB heuristic for BWAS and compare 
to DeepCubeA. We perform BWAS with N = 10,000 and λ = 0.0, 0.1 
and 0.2. We compute the PDB heuristic in parallel across 32 cen-
tral processing units (CPUs). Note that at λ = 0.3 BWAS runs out of 
memory when using PDBs. Figure 2 shows that performing BWAS 
with DeepCubeA’s learned heuristic consistently produces shorter 
solutions, generates fewer nodes and is overall much faster than 
Korf ’s PDB heuristic.

We also compare the memory footprint and speed of pat-
tern databases to DeepCubeA. In terms of memory, for pat-
tern databases, it is necessary to load lookup tables into memory.  
For DeepCubeA, it is necessary to load the DNN into memory.  
Table 2 shows that DeepCubeA uses significantly less memory 
than PDBs. In terms of speed, we measure how quickly PDBs and 
DeepCubeA compute a heuristic for a single state, averaging over 
1,000 states. Given that DeepCubeA uses neural networks, which 
benefit from GPUs and batch processing, we measure the speed  
of DeepCubeA with both a single CPU and a single GPU, and  
with both sequential and batch processing of the states. Table 3  
shows that, as expected, PDBs on a single CPU are faster than 
DeepCubeA on a single CPU; however, the speed of PDBs on a sin-
gle CPU is comparable to the speed of DeepCubeA on a single GPU 
with batch processing.

During training we monitor how well the DNN is able to solve 
the Rubik’s cube using a greedy best-first search; we also monitor 
how well the DNN is able to estimate the optimal cost-to-go func-
tion (computed with Rokicki’s shortest path solver25). How these 
performance metrics change as a function of training iteration is 
shown in Fig. 3. The results show that DeepCubeA first learns to 
solve states closer to the goal before it learns to solve states further 
away from the goal. Cost-to-go estimation is less accurate for states 
further away from the goal; however, the cost-to-go function still 
correctly orders the states according to difficulty. In addition, we 
found that DeepCubeA frequently used the conjugate patterns of 
moves of the form aba−1 in its solutions and often found symmetric 
solutions to symmetric states. An example of this is shown in Fig. 4 
(see Methods for more details).

Table 2 | Comparison of the size (in GB) of the lookup tables for pattern PDBs and the size of the DNN used by DeepCubeA

Rubik’s cube 15 puzzle 24 puzzle 35 puzzle 48 puzzle Lights Out Sokoban

PDBs 4.67 8.51 1.86 0.64 4.86 – –

PDBs+ 182.00 – – – – –

DeepCubeA 0.06 0.06 0.08 0.08 0.10 0.05 0.06

PDBs+ refers to Rokicki’s PDB combined with knowledge of group theory24,25. The table shows that DeepCubeA always uses memory that is orders of magnitude less than PDBs.
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Fig. 2 | The performance of DeepCubeA versus PDBs when solving the Rubik’s cube with BWAS. N = 10,000 and λ is either 0.0, 0.1 or 0.2. Each dot 
represents the result on a single state. DeepCubeA is both faster and produces shorter solutions.
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Generalization to other combinatorial puzzles. The Rubik’s cube 
is only one combinatorial puzzle among many others. To demon-
strate the ability of DeepCubeA to generalize to other puzzles, we 
applied DeepCubeA to four popular sliding tile puzzles: the 15 puz-
zle, the 24 puzzle, 35 puzzle and 48 puzzle. Additionally, we applied 
DeepCubeA to Lights Out and Sokoban. Sokoban posed a unique 
challenge for DeepCubeA because actions taken in its environment 
are not always reversible.

Sliding tile puzzles. The 15 puzzle has 1.0 × 1013 possible combina-
tions, the 24 puzzle has 7.7 × 1024 possible combinations, the 35 
puzzle has 1.8 × 1041 possible combinations and the 48 puzzle has 
3.0 × 1062 possible combinations. The objective is to move the puzzle  

into its goal configuration shown in Fig. 1. For these sliding tile 
puzzles, we generated a test set of 500 states randomly scrambled 
between 1,000 and 10,000 times. The same DNN architecture and 
hyperparameters that are used for the Rubik’s cube are also used 
for the n puzzles with the exception of the addition of two more 
residual layers. We implemented an optimal solver using additive 
pattern databases9. DeepCubeA not only solved every test puzzle, 
but also found a shortest path to the goal 99.4% of the time for the 
15 puzzle and 96.98% of the time for the 24 puzzle. We also test on 
the 17 states that are furthest away from the goal for the 15 puzzle 
(these states are not known for the 24 puzzle)28. Solutions produced 
by DeepCubeA are, on average, 2.8 moves longer than the length 
of a shortest path and DeepCubeA finds a shortest path to the goal 

Table 3 | A suggestive comparison of the speed (in seconds) of the lookup tables for PDBs and the speed of the DNN used by 
DeepCubeA when computing the heuristic for a single state

Rubik’s cube 15 puzzle 24 puzzle 35 puzzle 48 puzzle Lights Out Sokoban

PDBs 2 × 106 1 × 106 2 × 106 3 × 106 4 × 106 – –

PDBs+ 6 × 107 – – – – – –

DeepCubeA (GPU-B) 6 × 106 6 × 106 7 × 106 8 × 106 9 × 106 7 × 106 6 × 106

DeepCubeA (GPU) 3 × 103 3 × 103 3 × 103 2 × 103 3 × 103 4 × 103 3 × 103

DeepCubeA (CPU-B) 7 × 104 6 × 104 9 × 104 9 × 104 1 × 103 1 × 103 7 × 104

DeepCubeA (CPU) 6 × 103 6 × 103 8 × 103 8 × 103 1 × 102 2 × 101 6 × 103

Results were averaged over 1,000 states. DeepCubeA was timed on a single CPU and on a single GPU when doing sequential processing of the states and batch processing of the states (batch processing 
is denoted by the ‘-B’ suffix). PDBs+ refers to Rokicki’s PDB combined with knowledge of group theory24,25. On a GPU, DeepCubeA is comparable to PDBs.

Table 4 | Comparison of DeepCubeA with optimal solvers based on PDBs along the dimension of solution length, percentage of 
optimal solutions, number of nodes generated, time taken to solve the problem and number of nodes generated per second for the 24 
puzzle and 35 puzzle

Puzzle Solver Length Percentage of optimal 
solutions

No. of nodes Time taken (s) Nodes per second

24 puzzle PDBs9 89.41 100.0 8.19 × 1010 4,239.54 1.91 × 107

DeepCubeA 89.49 96.98 6.44 × 106 19.33 3.34 × 105

35 puzzle PDBs9 – – – – –

DeepCubeA 124.64 – 9.26 × 106 28.45 3.25 × 105

For the 24 puzzle, DeepCubeA finds a shortest path to the goal the overwhelming majority of the time. For the 35 puzzle, no tractable optimal solver exists.

No. of scrambles

1

100 20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0

80

60

40

20

0

0 0.2 0.4 0.6 0.8 1.0 1.2

Iteration (×106)

0 0.2 0.4 0.6 0.8 1.0 1.2

Iteration (×106)

P
er

ce
nt

 s
ol

ve
d 

w
ith

 g
re

ed
y 

be
st

-f
irs

t s
ea

rc
h

A
ve

ra
ge

 c
os

t-
to

-g
o

5

7 15

13

10 17

20

30

No. of scrambles

1

5

7 15

13

10 17

20

30

Fig. 3 | The performance of DeepCubeA. The plots show that DeepCubeA first learns how to solve cubes closer to the goal and then learns to solve 
increasingly difficult cubes. Dashed lines represent the true average cost-to-go.
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for 17.6% of these states. For the 24 puzzle, on average, PDBs take 
4,239 s and DeepCubeA takes 19.3 s, over 200 times faster. Moreover, 
in the worst case we observed that the longest time needed to solve 
the 24 puzzle is 5 days for PDBs and 2 min for DeepCubeA. The 
average solution length is 124.76 for the 35 puzzle and 253.53 for the 
48 puzzle; however, we do not know how many of them are optimal 
due to the optimal solver being prohibitively slow for the 35 puzzle 
and 48 puzzle. The performances of DeepCubeA on the 24 puzzle 
and 35 puzzle are summarized in Table 4.

Although the shortest path solver for the 35 puzzle and 48 puz-
zle was prohibitively slow, we compare DeepCubeA to PDBs using 
BWAS. The results show that, compared to PDBs, DeepCubeA 
produces shorter solutions and generates fewer nodes, as shown in 
Supplementary Figs. 6 and 7. In combination, these results suggest 

that, as the size of the n-puzzle increases, DeepCubeA scales favour-
ably compared to PDBs.

Lights Out. Lights Out is a grid-based puzzle consisting of an N × N 
board of lights that may be either active or inactive. The goal is  
to convert all active lights to inactive from a random starting posi-
tion, as seen in Fig. 1. Pressing any light in the grid will switch the 
state of that light and its immediate horizontal and vertical neigh-
bours. At any given state, a player may click on any of the N2 lights. 
However, one difference of Lights Out compared to the other envi-
ronments is that the moves are commutative. We tested DeepCubeA 
on the 7 × 7 Lights Out puzzle. A theorem by Scherphuis29 shows 
that, for the 7 × 7 Lights Out puzzle, any solution that does not con-
tain any duplicate moves is an optimal solution. Using this theorem, 
we found that DeepCubeA found a shortest path to the goal for all 
test cases.

Sokoban. Sokoban30 is a planning problem that requires an agent 
to move boxes onto target locations. Boxes can only be pushed, 
not pulled. Note that training states are generated by pulling boxes 
instead of pushing them (see Methods for more details). To test our 
method on Sokoban, we train on the 900,000 training examples and 
test on the 1,000 testing examples used by previous research on a 
single-agent policy tree search applied to Sokoban31. DeepCubeA 
successfully solves 100% of all test examples. We compare the solu-
tion length and number of nodes expanded to this same previous 
research32. Although the goals of the aforementioned paper are 
slightly different from ours, DeepCubeA finds shorter paths than 
previously reported methods and also expands, at least, three times 
fewer nodes (Table 5).
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Table 5 | Comparison of DeepCubeA with optimal solvers based on PDBs along the dimension of solution length, percentage of 
optimal solutions, number of nodes generated, time taken to solve the problem and number of nodes generated per second

Puzzle Solver Length Percentage of optimal solutions No. of nodes Time taken (s) Nodes per second

Rubik’s cube PDBs7 – – – – –

PDBs+24 20.67 100.0 2.05 × 106 2.20 1.79 × 106

DeepCubeA 21.50 60.3 6.62 × 106 24.22 2.90 × 105

Rubik’s cubeh PDBs7 – – – – –

PDBs+24 26.00 100.0 2.41 × 1010 13,561.27 1.78 × 106

DeepCubeA 26.00 100.0 5.33 × 106 18.77 2.96 × 105

15 puzzle PDBs9 52.02 100.0 3.22 × 104 0.002 1.45 × 107

DeepCubeA 52.03 99.4 3.85 × 106 10.28 3.93 × 105

15 puzzleh PDBs9 80.00 100.0 1.53 × 107 0.997 1.56 × 107

DeepCubeA 82.82 17.65 2.76 × 107 69.36 3.98 × 105

24 puzzle PDBs9 89.41 100.0 8.19 × 1010 4,239.54 1.91 × 107

DeepCubeA 89.49 96.98 6.44 × 106 19.33 3.34 × 105

35 puzzle PDBs9 – – – – –

DeepCubeA 124.64 – 9.26 × 106 28.45 3.25 × 105

48 puzzle PDBs – – – – –

DeepCubeA 253.35 – 1.96 × 107 74.46 2.63 × 105

Lights Out DeepCubeA 24.26 100.0 1.14 × 106 3.27 3.51 × 105

Sokoban LevinTS32 39.80 – 6.60 × 103 – –

LevinTS(*)32 39.50 – 5.03 × 103 – –

LAMA32 51.60 – 3.15 × 103 – –

DeepCubeA 32.88 – 1.05 × 103 2.35 5.60 × 101

The datasets with an ‘h’ subscript are datasets containing the states that are furthest away from the goal state. PDBs+ refers to Rokicki’s PDB combined with knowledge of group theory24,25. For Sokoban, we 
compare nodes expanded instead of nodes generated to allow for a direct comparison to previous work. DeepCubeA often finds a shortest path to the goal. For the states that are furthest away from the 
goal, DeepCubeA either finds a shortest path or a path close in length to a shortest path.
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Discussion
DeepCubeA is able to solve planning problems with large state spaces 
and few goal states by learning a cost-to-go function, parameterized 
by a DNN, which is then used as a heuristic function for weighted 
A* search. The cost-to-go function is learned by using approximate 
value iteration on states generated by starting from the goal state 
and taking moves in reverse. DeepCubeA’s success in solving the 
problems investigated in this Article suggests that DeepCubeA can 
be readily applied to new problems given an input representation, 
a state transition model, a goal state and a reverse state transition 
model that can be used to adequately explore the state space.

With a heuristic function that never overestimates the cost of a 
shortest path (that is, an admissible heuristic function), weighed 
A* search comes with known bounds on how much the length 
of a solution can deviate from the length of an optimal solution. 
Although DeepCubeA’s heuristic function is not guaranteed to be 
admissible, and thus does not satisfy the requirement for these theo-
retical bounds, DeepCubeA nevertheless finds a shortest path to the 
goal in the majority of cases (see Methods for more details).

The generality of the core algorithm suggests that it may have 
applications beyond combinatorial puzzles, as problems with large 
state spaces and few goal states are not rare in planning, robotics 
and the natural sciences.

Methods
The Rubik’s cube. The 3 × 3 × 3 Rubik’s cube consists of smaller cubes called 
cubelets. These are classified by their sticker count: centre, edge and corner cubelets 
have 1, 2 and 3 stickers, respectively. The Rubik’s cube has 26 cubelets with 54 
stickers in total. The stickers have colours and there are six colours, one per face. 
In the solved state, all stickers on each face of the cube are the same colour. Given 
that the set of stickers on each cubelet is unique (that is, there is only one cubelet 
with white, red and green stickers), the 54 stickers themselves can be uniquely 
identified in any legal configuration of the Rubik’s cube. The representation given 
to the DNN encodes the colour of each sticker at each location using a one-hot 
encoding. As there are six possible colours and 54 stickers in total, this results in a 
state representation of size 324.

Moves are represented using face notation: a move is a letter stating which face 
to rotate. F, B, L, R, U and D correspond to turning the front, back, left, right, up 
and down faces, respectively. Each face name is in reference to a fixed front face. A 
clockwise rotation is represented with a single letter, whereas a letter followed by an 
apostrophe represents an anticlockwise rotation. For example: R rotates the right 
face by 90° clockwise, while R′ rotates it by 90° anticlockwise.

The Rubik’s cube state space has 4.3 × 1019 possible states. Any valid Rubik’s 
cube state can be optimally solved with at most 26 moves in the quarter-turn 
metric, or 20 moves in the half-turn metric22,25. The quarter-turn metric treats 180° 
rotations as two moves, whereas the half-turn metric treats 180° rotations as one 
move. We use the quarter-turn metric.

Additional combinatorial puzzles. Sliding puzzles. Another combinatorial puzzle 
we use to test DeepCubeA is the n-piece sliding puzzle. In the n puzzle, n square 
sliding tiles, numbered from 1 to n, are positioned in a square of length +n 1, 
with one empty tile position. Thus, the 15 puzzle consists of 15 tiles in a 4 × 4 grid, 
the 24 puzzle consists of 24 tiles in a 5 × 5 grid, the 35 puzzle consists of 35 tiles in 
a 6 × 6 grid and the 48 puzzle consists of 48 tiles in a 7 × 7 grid. Moves are made by 
swapping the empty position with any tile that is horizontally or vertically adjacent 
to it. For both puzzles, the representation given to the neural network uses one-hot 
encoding to specify which piece (tile or blank position) is in each position. For 
example, the dimension of the input to the neural network for the 15 puzzle would 
be 16 * 16 = 256. The 15 puzzle has 16!/2 ≈ 1.0 × 1013 possible states, the 24 puzzle 
has 25!/2 ≈ 7.7 × 1024 possible states, the 35 puzzle has 36!/2 ≈ 1.8 × 1041 possible 
states and the 48 puzzle has 49!/2 ≈ 3.0 × 1062 possible states. Any valid 15 puzzle 
configuration can be solved with at most 80 moves33,34. The largest minimal numbers 
of moves required to solve the 24 puzzle, 35 puzzle and 48 puzzle are not known.

Lights Out. Lights Out contains N2 lights on an N × N board. The lights can either 
be on or off. The representation given to the DNN is a vector of size N2. Each 
element is 1 if the corresponding light is on and 0 if the corresponding light is off.

Sokoban. The Sokoban environment we use is a 10 × 10 grid that contains four 
boxes that an agent needs to push onto four targets. In addition to the agent, boxes 
and targets, Sokoban also contains walls. The representation given to the DNN 
contains four binary vectors of size 102 that represent the position on the agent, 
boxes, targets and walls. Given that boxes can only be pushed, not pulled, some 
actions are irreversible. For example, a box pushed into a corner can no longer be 

moved, creating a sampling problem because some states are unreachable when 
starting from the goal state. To address this, for each training state, we start from 
the goal state and allow boxes to be pulled instead of pushed.

Deep approximate value iteration. Value iteration15 is a dynamic programming 
algorithm14,16 that iteratively improves a cost-to-go function J. In traditional value 
iteration, J takes the form of a lookup table where the cost-to-go J(s) is stored in a 
table for all possible states s. Value iteration loops through each state s and updates 
J(s) until convergence:

∑ γ← ′ ′ + ′
′

J s P s s g s s J s( ) min ( , )( ( , ) ( )) (3)a
s

a a

Here Pa(s, s′) is the transition matrix representing the probability of transitioning 
from state s to state s′ by taking action a; ga(s, s′) is the cost associated with 
transitioning from state s to s′ by taking action a; γ is the discount factor. In 
principle, this update equation can also be applied to the puzzles investigated in 
this Article. However, as these puzzles are deterministic, the transition function is a 
degenerate probability mass function for each action, simplifying equation (3).  
Furthermore, because we wish to assign equal importance to all costs, γ = 1. 
Therefore, we can update J(s) using equation (1).

However, given the size of the state space of the Rubik’s cube, maintaining a 
table to store the cost-to-go of each state is not feasible. Therefore, we resort to 
approximate value iteration16. Instead of representing the cost-to-go function as 
a lookup table, we approximate the cost-to-go function using a parameterized 
function jθ, with parameters θ. This function is implemented using a DNN. 
Therefore, we call the resulting algorithm DAVI:
Algorithm 1: DAVI. 
Input:

  B: Batch size
  K: Maximum number of scrambles
  M: Training iterations
  C: How often to check for convergence
  ϵ: Error threshold

Output:
  θ: Trained neural network parameters

θ ← initialize_parameters()
θe ← θ
for m = 1 to M do

X ← get_scrambled_states(B, K)
for xi ∈ X do
  ← + θy g x A x a j A x amin ( ( , ( , )) ( ( , )))i a

a
i i ie  θ ← θj X y, loss train( , , )

  if (M mod C = 0) and ( ϵ<loss ) then
  θe ← θ

Return θ
To train the DNN, we have two sets of parameters: the parameters being 

trained, θ, and the parameters used to obtain an improved estimate of the cost-
to-go, θe. The output of 

θj s( )
e

 is set to 0 if s is the goal state. The DNN is trained to 
minimize the mean squared error between its estimation of the cost-to-go and the 
estimation obtained from equation (1). Every C iterations, the algorithm checks if 
the error falls below a certain threshold ϵ; if so, then θe is set to θ. The entire DAVI 
process is shown in Algorithm 1. Although we tried updating θe at each iteration, 
we found that the performance saturated after a certain point and sometimes 
became unstable. Updating θe only after the error falls below a threshold ϵ yields 
better, more stable, performance.

Training set state distribution. For learning to occur, we must train on a state 
distribution that allows information to propagate from the goal state to all the 
other states seen during training. Our approach for achieving this is simple: each 
training state xi is obtained by randomly scrambling the goal state ki times, where ki 
is uniformly distributed between 1 and K. During training, the cost-to-go function 
first improves for states that are only one move away from the goal state. The 
cost-to-go function then improves for states further away as the reward signal is 
propagated from the goal state to other states through the cost-to-go function. This 
can be seen as a simplified version of prioritized sweeping35. Exploring in reverse 
from the goal state is a well-known technique and has been used in means-end 
analysis36 and STRIPS37. In future work we will explore different ways of generating 
a training set distribution.

Distributed training. In the Rubik’s cube environment, there are 12 possible actions 
that can be applied to every state. Using equation (1) to update the cost-to-go 
estimate of a single state thus requires applying the DNN to 12 states. As a result, 
equation (1) takes up the majority of the computational time. However, as is the 
case with methods such as ExIt38, this is a trivially parallelizable task that can easily 
be distributed across multiple GPUs.

BWAS. A* search17 is a heuristic-based search algorithm that finds a path between 
a starting node xs and a goal node xg. A* search maintains a set, OPEN, from which 
it iteratively removes and expands the node with the lowest cost. The cost of each 
node x is determined by the function f(x) = g(x) + h(x), where g(x) is the path cost 
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(the distance between xs and x) and h(x) is the heuristic function, which estimates 
the distance between x and xg. After a node is expanded, that node is then added 
to another set, CLOSED, and its children that are not already in CLOSED are 
added to OPEN. The algorithm starts with only the starting node in OPEN and 
terminates when the goal node is removed from OPEN.

In this application, each node corresponds to a state of the Rubik’s cube and 
the goal node corresponds to the goal state shown in Fig. 1. The path cost of every 
child of a node x is set to g(x) + 1. The path cost of xs is 0. The heuristic function 
h(x) is obtained from the learned cost-to-go function shown in equation (2).

A variant of A* search, called weighted A* search19, trades potentially longer 
solutions for potentially less memory usage. In this case, the function f(x) is 
modified to f(x) = λg(x) + h(x), with weight λ ∈ [0, 1]. While decreasing the weight 
λ will not necessarily decrease the number of nodes generated39, in practice our 
experiments show that decreasing λ generally reduces the number of nodes 
generated and increases the length of the solutions found. In our implementation, 
if we encounter a node x that is already in CLOSED, and if x has a lower path cost 
than the node that is already in CLOSED, we remove that node from CLOSED and 
add x to OPEN.

The most time-consuming aspect of the algorithm is the computation of the 
heuristic h(x). The heuristic of many nodes can be computed in parallel across 
multiple GPUs by expanding the N best nodes from OPEN at each iteration. 
Our experiments show that larger values of N generally lead to shorter solutions 
and evaluate more nodes per second than searches with smaller N. We call the 
combination of A* search with a path-cost weight λ and a batch size of N ‘BWAS’.

To satisfy the theoretical bounds on how much the length of a solution 
will deviate from the length of an optimal solution, the heuristic used in the 
weighted A* search must be admissible. That is to say that the heuristic can never 
overestimate the cost to reach the goal. Although DeepCubeA’s value function is 
not admissible, we empirically evaluate by how much DeepCubeA overestimates 
the cost to reach the goal. To do this, we obtain the length of a shortest path to the 
goal for 100,000 Rubik’s cube states scrambled between 1 and 30 times. We then 
evaluate those same states with DeepCubeA’s heuristic function jθ. We find that 
DeepCubeA’s heuristic function does not overestimate the cost to reach the goal 
66.8% of the time and 97.4% of the time it does not overestimate it by more than 
one. The average overestimation of the cost is 0.24.

Neural network architecture. The first two hidden layers of the DNNs have sizes 
of 5,000 and 1,000, respectively, with full connectivity. These are then followed 
by four residual blocks27, where each residual block has two hidden layers of size 
1,000. Finally, the output layer consists of a single linear unit representing the cost-
to-go estimate (Supplementary Fig. 3). We used batch normalization40 and rectified 
linear activation functions41 in all hidden layers. The DNN was trained with a batch 
size of 10,000, optimized with ADAM42, and did not use any regularization. The 
maximum number of random moves applied to any training state K was set to 30. 
The error threshold ε was set to 0.05. We checked if the loss fell below the error 
threshold every 5,000 iterations. Training was carried out for 1 million iterations 
on two NVIDIA Titan V GPUs, with six other GPUs used in parallel for data 
generation. In total, the DNN saw 10 billion examples during training. Training 
was completed in 36 h. When solving scrambled cubes from the test set, we use 
four NVIDIA X Pascal GPUs in parallel to compute the cost-to-go estimate. For  
the 15 puzzle, 24 puzzle and Lights Out we set K to 500. For the 35 puzzle, 48 
puzzle and Sokoban we set K to 1,000. For the 24 puzzle we use six residual blocks 
instead of four.

Comparison to multi-step lookahead update strategies. Instead of using 
equation (1), which may be seen as a depth-1 breadth-first search (BFS), to update 
the estimated cost-to-go function we experimented with a depth-2 BFS. To obtain 
a better perspective on how well DeepCubeA’s learning procedure trains the given 
DNN, we also implemented an update strategy of trying to directly imitate the 
optimal cost-to-go function calculated using the handmade optimal solver25 by 
minimizing the mean squared error between the output of the DNN and the oracle 
value provided by the optimal solver. We demonstrate that the DNN trained with 
DAVI achieves the same performance as a DNN with the same architecture trained 
with these update strategies. The performance obtained from a depth-2 BFS 
update strategy is shown in Supplementary Fig. 1. Although the final performance 
obtained with depth-2 BFS is similar to the performance obtained with depth-1 
BFS, its computational cost is significantly higher. Even when using 20 GPUs in 
parallel for data generation (instead of six), the training time is five times longer for 
the same number of iterations. Supplementary Fig. 2 shows that the DNN trained 
to imitate the optimal cost-to-go function predicts the optimal cost-to-go more 
accurately than DeepCubeA for states scrambled 20 or more times. The figure  
also shows the performance on solving puzzles using a greedy best-first search with 
this imitated cost-to-go function suffers for states scrambled fewer than 20 times. 
We speculate that this is because imitating the optimal cost-to-go function causes 
the DNN to overestimate the cost to reach the goal for states scrambled fewer than 
20 times.

Hyperparameter selection for BWAS. To choose the hyperparameters of BWAS, 
we carried out a grid search over λ and N. Values of λ were 0.0, 0.2, 0.4, 0.6, 0.8 and 

1.0 and values of N were 1, 100, 1,000 and 10,000. The grid search was performed 
on 100 cubes that were generated separately from the test set. The GPU machines 
available to us had 64 GB of RAM. Hyperparameter configurations that reached 
this limit were stopped early and thus not included in the results. Supplementary 
Fig. 4 shows how λ and N affect performance in terms of average solution length, 
average number of nodes generated, average solve time and average number of 
nodes generated per second. The figure shows that as λ increases, the average 
solution length decreases; however, the time to find a solution typically increases as 
well. The results also show that larger values of N lead to shorter solution lengths, 
but generally also require more time to find a solution; however, the number of 
nodes generated per second also increases due to the parallelism provided by the 
GPUs. Because λ = 0.6 and N = 10,000 resulted in the shortest solution lengths, 
we use these hyperparameters for the Rubik’s cube. For the 15 puzzle, 24 puzzle 
and 35 puzzle we use λ = 0.8 and N = 20,000. For the 48 puzzle we use λ = 0.6 and 
N = 20,000. We increased N from 10,000 to 20,000 because we saw a reduction in 
solution length. For Lights Out we use λ = 0.2 and N = 1,000. For Sokoban we use 
λ = 0.8 and N = 1.

PDBs. PDBs26 are used to obtain a heuristic using lookup tables. Each lookup 
table contains the number of moves required to solve all possible combinations of 
a certain subgoal. For example, we can obtain a lookup table by enumerating all 
possible combinations of the edge cubelets on the Rubik’s cube using a BFS. These 
lookup tables are then combined through either a max operator or a sum operator 
(depending on independence between subgoals)7,8 to produce a lower bound on 
the number of steps required to solve the problem. Features from different PDBs 
can be combined with neural networks for improved performance43.

For the Rubik’s cube, we implemented the PBD that Korf uses to find optimal 
solutions to the Rubik’s cube7. For the 15 puzzle, 24 puzzle and 35 puzzle, we 
implement the PDBs described in Felner and other’s work on additive PDBs9. To 
the best of our knowledge, no-one has created a PDB for the 48 puzzle. We create 
our own by partitioning the puzzle into nine subgoals of size 5 and one subgoal of 
size 3. For all the n puzzles, we also save the mirror of each PDB to improve the 
heuristic and map each lookup table to a representation of size pk where p is the 
total number of puzzle pieces and k is the size of the subgoal. Although this uses 
more memory, this is done to increase the speed of the lookup table9. For the n 
puzzle, the optimal solver algorithm (IDA*23) adds an additional optimization by 
only computing the location of the beginning state in the lookup table and then 
only computing offsets for each subsequently generated state.

Web server. We have created a web server, located at http://deepcube.igb.uci.edu/, 
to allow anyone to use DeepCubeA to solve the Rubik’s cube. In the interest of 
speed, the hyperparameters for BWAS are set to λ = 0.2 and N = 100 in the server. 
The user can initiate a request to scramble the cube randomly or use the keyboard 
keys to scramble the cube as they wish. The user can then use the ‘solve’ button 
to have DeepCubeA compute and post a solution, and execute the corresponding 
moves. The basic web server’s interface is displayed in Supplementary Fig. 5.

Conjugate patterns and symmetric states. Because the operation of the Rubik’s 
cube is deeply rooted in group theory, solutions produced by an algorithm 
that learns how to solve this puzzle should contain group theory properties. In 
particular, conjugate patterns of moves of the form aba−1 should appear relatively 
often when solving the Rubik’s cube. These patterns are necessary for manipulating 
specific cubelets while not affecting the positions of other cubelets. Using a sliding 
window, we gathered all triplets in all solutions to the Rubik’s cube and found that 
aba−1 accounted for 13.11% of all triplets (significantly above random), while aba 
accounted for 8.86%, aab accounted for 4.96% and abb accounted for 4.92%. To put 
this into perspective, for the optimal solver, aba−1, aba, aab and abb accounted for 
9.15, 9.63, 5.30 and 5.35% of all triplets, respectively.

In addition, we found that DeepCubeA often found symmetric solutions to 
symmetric states. One can produce a symmetric state for the Rubik’s cube by 
mirroring the cube from left to right, as shown in Fig. 4. The optimal solutions 
for two symmetric states have the same length; furthermore, one can use the 
mirrored solution of one state to solve the other. To see if this property was present 
in DeepCubeA, we created mirrored states of the Rubik’s cube test set and solved 
them using DeepCubeA. The results showed that 58.30% of the solutions to the 
mirrored test set were symmetric to those of the original test set. Of the solutions 
that were not symmetric, 69.54% had the same solution length as the solution 
length obtained on the original test set. To put this into perspective, for the 
handmade optimal solver, the results showed that 74.50% of the solutions to the 
mirrored test set were symmetric to those of the original test set.

Data availability
The environments for all puzzles presented in this paper, code to generate labelled 
training data and initial states used to test DeepCubeA are available through a 
Code Ocean compute capsule (https://doi.org/10.24433/CO.4958495.v1)44.
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