
Articles
https://doi.org/10.1038/s42256-019-0070-z

1Department of Computer Science, University of California Irvine, Irvine, CA, USA. 2Department of Statistics, University of California Irvine, Irvine, CA,
USA. 3These authors contributed equally: Forest Agostinelli, Stephen McAleer, Alexander Shmakov. *e-mail: pfbaldi@uci.edu

The Rubik’s cube is a classic combinatorial puzzle that poses
unique and interesting challenges for artificial intelligence
and machine learning. Although the state space is excep-

tionally large (4.3 × 1019 different states), there is only one goal
state. Furthermore, the Rubik’s cube is a single-player game and
a sequence of random moves, no matter how long, is unlikely to
end in the goal state. Developing machine learning algorithms to
deal with this property of the Rubik’s cube might provide insights
into learning to solve planning problems with large state spaces.
Although machine learning methods have previously been applied
to the Rubik’s cube, these methods have either failed to reliably solve
the cube1–4 or have had to rely on specific domain knowledge5,6.
Outside of machine learning methods, methods based on pattern
databases (PDBs) have been effective at solving puzzles such as the
Rubik’s cube, the 15 puzzle and the 24 puzzle7,8, but these methods
can be memory-intensive and puzzle-specific.

More broadly, a major goal in artificial intelligence is to create
algorithms that are able to learn how to master various environ-
ments without relying on domain-specific human knowledge. The
classical 3 × 3 × 3 Rubik’s cube is only one representative of a larger
family of possible environments that broadly share the characteris-
tics described above, including (1) cubes with longer edges or higher
dimension (for example, 4 × 4 × 4 or 2 × 2 × 2 × 2), (2) sliding tile
puzzles (for example the 15 puzzle, 24 puzzle, 35 puzzle and 48 puz-
zle), (3) Lights Out and (4) Sokoban. As the size and dimensions are
increased, the complexity of the underlying combinatorial problems
rapidly increases. For example, while finding an optimal solution
to the 15 puzzle takes less than a second on a modern-day desktop,
finding an optimal solution to the 24 puzzle can take days, and find-
ing an optimal solution to the 35 puzzle is generally intractable9.
Not only are the aforementioned puzzles relevant as mathematical
games, but they can also be used to test planning algorithms10 and
to assess how well a machine learning approach may generalize to
different environments. Furthermore, because the operation of the
Rubik’s cube and other combinatorial puzzles are deeply rooted
in group theory, these puzzles also raise broader questions about
the application of machine learning methods to complex symbolic
systems, including mathematics. In short, for all these reasons, the
Rubik’s cube poses interesting challenges for machine learning.

To address these challenges, we have developed DeepCubeA,
which combines deep learning11,12 with classical reinforcement
learning13 (approximate value iteration14–16) and path finding meth-
ods (weighted A* search17,18). DeepCubeA is able to solve combi-
natorial puzzles such as the Rubik’s cube, 15 puzzle, 24 puzzle, 35
puzzle, 48 puzzle, Lights Out and Sokoban (Fig. 1). DeepCubeA
works by using approximate value iteration to train a deep neural
network (DNN) to approximate a function that outputs the cost
to reach the goal (also known as the cost-to-go function). Given
that random play is unlikely to end in the goal state, DeepCubeA
trains on states obtained by starting from the goal state and
randomly taking moves in reverse. After training, the learned
cost-to-go function is used as a heuristic to solve the puzzles using
a weighted A* search17–19.

DeepCubeA builds on DeepCube20, a deep reinforcement
learning algorithm that solves the Rubik’s cube using a policy and
value function combined with Monte Carlo tree search (MCTS).
MCTS, combined with a policy and value function, is also used by
AlphaZero, which learns to beat the best existing programs in chess,
Go and shogi21. In practice, we find that, for combinatorial puzzles,
MCTS has relatively long runtimes and often produces solutions
many moves longer than the length of a shortest path. In contrast,
DeepCubeA finds a shortest path to the goal for puzzles for which a
shortest path is computationally verifiable: 60.3% of the time for the
Rubik’s cube and over 90% of the time for the 15 puzzle, 24 puzzle
and Lights Out.

Deep approximate value iteration
Value iteration15 is a dynamic programming algorithm14,16 that
iteratively improves a cost-to-go function J. In traditional value
iteration, J takes the form of a lookup table where the cost-to-
go J(s) is stored in a table for all possible states s. However, this
lookup table representation becomes infeasible for combinatorial
puzzles with large state spaces like the Rubik’s cube. Therefore,
we turn to approximate value iteration16, where J is represented by
a parameterized function implemented by a DNN. The DNN is
trained to minimize the mean squared error between its estima-
tion of the cost-to-go of state s, J(s), and the updated cost-to-go
estimation J′(s):

Solving the Rubik’s cube with deep reinforcement
learning and search
Forest Agostinelli1,3, Stephen McAleer2,3, Alexander Shmakov1,3 and Pierre Baldi   1,2*

The Rubik’s cube is a prototypical combinatorial puzzle that has a large state space with a single goal state. The goal state is
unlikely to be accessed using sequences of randomly generated moves, posing unique challenges for machine learning. We
solve the Rubik’s cube with DeepCubeA, a deep reinforcement learning approach that learns how to solve increasingly difficult
states in reverse from the goal state without any specific domain knowledge. DeepCubeA solves 100% of all test configura-
tions, finding a shortest path to the goal state 60.3% of the time. DeepCubeA generalizes to other combinatorial puzzles and
is able to solve the 15 puzzle, 24 puzzle, 35 puzzle, 48 puzzle, Lights Out and Sokoban, finding a shortest path in the majority
of verifiable cases.

Nature Machine Intelligence | VOL 1 | AUGUST 2019 | 356–363 | www.nature.com/natmachintell356

mailto:pfbaldi@uci.edu
http://orcid.org/0000-0001-8752-4664
http://www.nature.com/natmachintell

ArticlesNATuRe MAChine InTeLLigenCe

′ = +J s g s A s a J A s a() min ((, (,)) ((,))) (1)a
a

where A(s, a) is the state obtained from taking action a in state s and
ga(s, s′) is the cost to transition from state s to state s′ taking action
a. For the puzzles investigated in this Article, ga(s, s′) is always 1.
We call the resulting algorithm ‘deep approximate value iteration’
(DAVI).

We train on a state distribution that allows information to propa-
gate from the goal state to all the other states seen during train-
ing. Our method of achieving this is simple: each training state xi is
obtained by randomly scrambling the goal state ki times, where ki is
uniformly distributed between 1 and K.

Although the update in equation (1) is only a one-step lookahead,
it has been shown that, as training progresses, J approximates the opti-
mal cost-to-go function J* (ref. 16). This optimal cost-to-go function
computes the total cost incurred when taking a shortest path to the
goal. Instead of equation (1), multi-step lookaheads such as a depth-N
search or Monte Carlo tree search can be used. We experimented with
different multi-step lookaheads and found that multi-step lookahead
strategies resulted in, at best, similar performance to the one-step loo-
kahead used by DAVI (see Methods for more details).

Batch weighted A* search
After learning a cost-to-go function, we can then use it as a heuris-
tic to search for a path between a starting state and the goal state.
The search algorithm that we use is a variant of A* search17, a best-
first search algorithm that iteratively expands the node with the
lowest cost until the node associated with the goal state is selected
for expansion. The cost of each node x in the search tree is

determined by the function f(x) = g(x) + h(x), where g(x) is the path
cost, which is the distance between the starting state and x, and h(x)
is the heuristic function, which estimates the distance between x
and the goal state. The heuristic function h(x) is obtained from the
learned cost-to-go function:






=h x
x

J x
()

0 if is associated with the goal state
() otherwise

(2)

We use a variant of A* search called weighted A* search18.
Weighted A* search trades potentially longer solutions for
potentially less memory usage by using, instead, the function
f(x) = λg(x) + h(x), where λ is a weighting factor between zero and
one. Furthermore, using a computationally expensive model for the
heuristic function h(x), such as a DNN, could result in an intracta-
bly slow solver. However, h(x) can be computed for many nodes in
parallel by expanding the N lowest cost nodes at each iteration. We
call the combination of A* search with a path-cost coefficient λ and
batch size N ‘batch weighted A* search’ (BWAS).

In summary, the algorithm presented in this Article uses DAVI
to train a DNN as the cost-to-go function on states whose difficulty
ranges from easy to hard. The trained cost-to-go function is then
used as a heuristic for BWAS to find a path from any given state to
the goal state. We call the resulting algorithm DeepCubeA.

Results
To test the approach, we generate a test set of 1,000 states by ran-
domly scrambling the goal state between 1,000 and 10,000 times.
Additionally, we test the performance of DeepCubeA on the three

Rubik’s cube 24 puzzle Lights Out (7×7) Sokoban

22 12 4 2 5

17 16 3 6 9

20 19 18 11 7

21 14 10 8 15

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24

23 1 24 13

Fig. 1 | Visualization of scrambled states and goal states. Visualization of a scrambled state (top) and the goal state (bottom) for four puzzles
investigated here.

Table 1 | Comparison of DeepCubeA with optimal solvers based on PDBs along the dimension of solution length, percentage of
optimal solutions, number of nodes generated, time taken to solve the problem and number of nodes generated per second on the
Rubik’s cube states that are furthest away from the goal

Puzzle Solver Length Percentage of optimal solutions No. of nodes Time taken (s) Nodes per second

Rubik’s cubeh PDBs7 – – – – –

PDBs+24 26.00 100.0 2.41 × 1010 13,561.27 1.78 × 106

DeepCubeA 26.00 100.0 5.33 × 106 18.77 2.96 × 105

PDBs+ refer to Rokicki’s optimal solver, which uses PDB combined with knowledge of group theory24,25. DeepCubeA finds a shortest path to the goal for all of the states furthest away from the goal.

Nature Machine Intelligence | VOL 1 | AUGUST 2019 | 356–363 | www.nature.com/natmachintell 357

http://www.nature.com/natmachintell

Articles NATuRe MAChine InTeLLigenCe

known states that are the furthest possible distance away from the
goal (26 moves)22. To assess how often DeepCubeA finds a shortest
path to the goal, we need to compare our results to a shortest path
solver. We can obtain a shortest path solver by using an iterative
deepening A* search (IDA*)23 with an admissible heuristic com-
puted from a PDB. Initially, we used the PDB described in Korf ’s
work on finding optimal solutions to the Rubik’s cube7; however,
this solver only solves a few states a day. Therefore, we use the opti-
mal solver that was used to find the maximum of the minimum
number of moves required to solve the Rubik’s cube from any given
state (so-called ‘God’s number’)24,25. This human-engineered solver
relies on large PDBs26 (requiring 182 GB of memory) and sophisti-
cated knowledge of group theory to find a shortest path to the goal
state. Comparisons between DeepCubeA and shortest path solvers
are shown later in Table 5.

The DNN architecture consists of two fully connected hidden
layers, followed by four residual blocks27, followed by a linear out-
put unit that represents the cost-to-go estimate. The hyperparam-
eters of BWAS were chosen by doing a grid search over λ and N on
data generated separately from the test set (see Methods for more
details). When performing BWAS, the heuristic function is com-
puted in parallel across four NVIDIA Titan V graphics processing
units (GPUs).

Performance. DeepCubeA finds a solution to 100% of all test
states. DeepCubeA finds a shortest path to the goal 60.3% of the
time. Aside from the optimal solutions, 36.4% of the solutions are
only two moves longer than the optimal solution, while the remain-
ing 3.3% are four moves longer than the optimal solution. For the
three states that are furthest away from the goal, DeepCubeA finds
a shortest path to the goal for all three states (Table 1). Although
we relate the performance of DeepCubeA to the performance of
shortest path solvers based on PDBs, a direct comparison cannot be
made because shortest path solvers guarantee an optimal solution
while DeepCubeA does not.

Although PDBs can be used in shortest path solvers, they
can also be used in BWAS in place of the heuristic learned by

DeepCubeA. We use Korf ’s PDB heuristic for BWAS and compare
to DeepCubeA. We perform BWAS with N = 10,000 and λ = 0.0, 0.1
and 0.2. We compute the PDB heuristic in parallel across 32 cen-
tral processing units (CPUs). Note that at λ = 0.3 BWAS runs out of
memory when using PDBs. Figure 2 shows that performing BWAS
with DeepCubeA’s learned heuristic consistently produces shorter
solutions, generates fewer nodes and is overall much faster than
Korf ’s PDB heuristic.

We also compare the memory footprint and speed of pat-
tern databases to DeepCubeA. In terms of memory, for pat-
tern databases, it is necessary to load lookup tables into memory.
For DeepCubeA, it is necessary to load the DNN into memory.
Table 2 shows that DeepCubeA uses significantly less memory
than PDBs. In terms of speed, we measure how quickly PDBs and
DeepCubeA compute a heuristic for a single state, averaging over
1,000 states. Given that DeepCubeA uses neural networks, which
benefit from GPUs and batch processing, we measure the speed
of DeepCubeA with both a single CPU and a single GPU, and
with both sequential and batch processing of the states. Table 3
shows that, as expected, PDBs on a single CPU are faster than
DeepCubeA on a single CPU; however, the speed of PDBs on a sin-
gle CPU is comparable to the speed of DeepCubeA on a single GPU
with batch processing.

During training we monitor how well the DNN is able to solve
the Rubik’s cube using a greedy best-first search; we also monitor
how well the DNN is able to estimate the optimal cost-to-go func-
tion (computed with Rokicki’s shortest path solver25). How these
performance metrics change as a function of training iteration is
shown in Fig. 3. The results show that DeepCubeA first learns to
solve states closer to the goal before it learns to solve states further
away from the goal. Cost-to-go estimation is less accurate for states
further away from the goal; however, the cost-to-go function still
correctly orders the states according to difficulty. In addition, we
found that DeepCubeA frequently used the conjugate patterns of
moves of the form aba−1 in its solutions and often found symmetric
solutions to symmetric states. An example of this is shown in Fig. 4
(see Methods for more details).

Table 2 | Comparison of the size (in GB) of the lookup tables for pattern PDBs and the size of the DNN used by DeepCubeA

Rubik’s cube 15 puzzle 24 puzzle 35 puzzle 48 puzzle Lights Out Sokoban

PDBs 4.67 8.51 1.86 0.64 4.86 – –

PDBs+ 182.00 – – – – –

DeepCubeA 0.06 0.06 0.08 0.08 0.10 0.05 0.06

PDBs+ refers to Rokicki’s PDB combined with knowledge of group theory24,25. The table shows that DeepCubeA always uses memory that is orders of magnitude less than PDBs.

140

120

100

80

60

40

20

101 102 103

DeepCubeA, λ = 0.0
DeepCubeA, λ = 0.1
DeepCubeA, λ = 0.2
PDB, λ = 0.0
PDB, λ = 0.1
PDB, λ = 0.2

107 108

Nodes generated

109

Calculation time (s)

S
ol

ut
io

n
le

ng
th

140

120

100

80

60

40

20

S
ol

ut
io

n
le

ng
th

DeepCubeA, λ = 0.0
DeepCubeA, λ = 0.1
DeepCubeA, λ = 0.2
PDB, λ = 0.0
PDB, λ = 0.1
PDB, λ = 0.2

Fig. 2 | The performance of DeepCubeA versus PDBs when solving the Rubik’s cube with BWAS. N = 10,000 and λ is either 0.0, 0.1 or 0.2. Each dot
represents the result on a single state. DeepCubeA is both faster and produces shorter solutions.

Nature Machine Intelligence | VOL 1 | AUGUST 2019 | 356–363 | www.nature.com/natmachintell358

http://www.nature.com/natmachintell

ArticlesNATuRe MAChine InTeLLigenCe

Generalization to other combinatorial puzzles. The Rubik’s cube
is only one combinatorial puzzle among many others. To demon-
strate the ability of DeepCubeA to generalize to other puzzles, we
applied DeepCubeA to four popular sliding tile puzzles: the 15 puz-
zle, the 24 puzzle, 35 puzzle and 48 puzzle. Additionally, we applied
DeepCubeA to Lights Out and Sokoban. Sokoban posed a unique
challenge for DeepCubeA because actions taken in its environment
are not always reversible.

Sliding tile puzzles. The 15 puzzle has 1.0 × 1013 possible combina-
tions, the 24 puzzle has 7.7 × 1024 possible combinations, the 35
puzzle has 1.8 × 1041 possible combinations and the 48 puzzle has
3.0 × 1062 possible combinations. The objective is to move the puzzle

into its goal configuration shown in Fig. 1. For these sliding tile
puzzles, we generated a test set of 500 states randomly scrambled
between 1,000 and 10,000 times. The same DNN architecture and
hyperparameters that are used for the Rubik’s cube are also used
for the n puzzles with the exception of the addition of two more
residual layers. We implemented an optimal solver using additive
pattern databases9. DeepCubeA not only solved every test puzzle,
but also found a shortest path to the goal 99.4% of the time for the
15 puzzle and 96.98% of the time for the 24 puzzle. We also test on
the 17 states that are furthest away from the goal for the 15 puzzle
(these states are not known for the 24 puzzle)28. Solutions produced
by DeepCubeA are, on average, 2.8 moves longer than the length
of a shortest path and DeepCubeA finds a shortest path to the goal

Table 3 | A suggestive comparison of the speed (in seconds) of the lookup tables for PDBs and the speed of the DNN used by
DeepCubeA when computing the heuristic for a single state

Rubik’s cube 15 puzzle 24 puzzle 35 puzzle 48 puzzle Lights Out Sokoban

PDBs 2 × 106 1 × 106 2 × 106 3 × 106 4 × 106 – –

PDBs+ 6 × 107 – – – – – –

DeepCubeA (GPU-B) 6 × 106 6 × 106 7 × 106 8 × 106 9 × 106 7 × 106 6 × 106

DeepCubeA (GPU) 3 × 103 3 × 103 3 × 103 2 × 103 3 × 103 4 × 103 3 × 103

DeepCubeA (CPU-B) 7 × 104 6 × 104 9 × 104 9 × 104 1 × 103 1 × 103 7 × 104

DeepCubeA (CPU) 6 × 103 6 × 103 8 × 103 8 × 103 1 × 102 2 × 101 6 × 103

Results were averaged over 1,000 states. DeepCubeA was timed on a single CPU and on a single GPU when doing sequential processing of the states and batch processing of the states (batch processing
is denoted by the ‘-B’ suffix). PDBs+ refers to Rokicki’s PDB combined with knowledge of group theory24,25. On a GPU, DeepCubeA is comparable to PDBs.

Table 4 | Comparison of DeepCubeA with optimal solvers based on PDBs along the dimension of solution length, percentage of
optimal solutions, number of nodes generated, time taken to solve the problem and number of nodes generated per second for the 24
puzzle and 35 puzzle

Puzzle Solver Length Percentage of optimal
solutions

No. of nodes Time taken (s) Nodes per second

24 puzzle PDBs9 89.41 100.0 8.19 × 1010 4,239.54 1.91 × 107

DeepCubeA 89.49 96.98 6.44 × 106 19.33 3.34 × 105

35 puzzle PDBs9 – – – – –

DeepCubeA 124.64 – 9.26 × 106 28.45 3.25 × 105

For the 24 puzzle, DeepCubeA finds a shortest path to the goal the overwhelming majority of the time. For the 35 puzzle, no tractable optimal solver exists.

No. of scrambles

1

100 20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0

80

60

40

20

0

0 0.2 0.4 0.6 0.8 1.0 1.2

Iteration (×106)

0 0.2 0.4 0.6 0.8 1.0 1.2

Iteration (×106)

P
er

ce
nt

 s
ol

ve
d

w
ith

 g
re

ed
y

be
st

-f
irs

t s
ea

rc
h

A
ve

ra
ge

 c
os

t-
to

-g
o

5

7 15

13

10 17

20

30

No. of scrambles

1

5

7 15

13

10 17

20

30

Fig. 3 | The performance of DeepCubeA. The plots show that DeepCubeA first learns how to solve cubes closer to the goal and then learns to solve
increasingly difficult cubes. Dashed lines represent the true average cost-to-go.

Nature Machine Intelligence | VOL 1 | AUGUST 2019 | 356–363 | www.nature.com/natmachintell 359

http://www.nature.com/natmachintell

Articles NATuRe MAChine InTeLLigenCe

for 17.6% of these states. For the 24 puzzle, on average, PDBs take
4,239 s and DeepCubeA takes 19.3 s, over 200 times faster. Moreover,
in the worst case we observed that the longest time needed to solve
the 24 puzzle is 5 days for PDBs and 2 min for DeepCubeA. The
average solution length is 124.76 for the 35 puzzle and 253.53 for the
48 puzzle; however, we do not know how many of them are optimal
due to the optimal solver being prohibitively slow for the 35 puzzle
and 48 puzzle. The performances of DeepCubeA on the 24 puzzle
and 35 puzzle are summarized in Table 4.

Although the shortest path solver for the 35 puzzle and 48 puz-
zle was prohibitively slow, we compare DeepCubeA to PDBs using
BWAS. The results show that, compared to PDBs, DeepCubeA
produces shorter solutions and generates fewer nodes, as shown in
Supplementary Figs. 6 and 7. In combination, these results suggest

that, as the size of the n-puzzle increases, DeepCubeA scales favour-
ably compared to PDBs.

Lights Out. Lights Out is a grid-based puzzle consisting of an N × N
board of lights that may be either active or inactive. The goal is
to convert all active lights to inactive from a random starting posi-
tion, as seen in Fig. 1. Pressing any light in the grid will switch the
state of that light and its immediate horizontal and vertical neigh-
bours. At any given state, a player may click on any of the N2 lights.
However, one difference of Lights Out compared to the other envi-
ronments is that the moves are commutative. We tested DeepCubeA
on the 7 × 7 Lights Out puzzle. A theorem by Scherphuis29 shows
that, for the 7 × 7 Lights Out puzzle, any solution that does not con-
tain any duplicate moves is an optimal solution. Using this theorem,
we found that DeepCubeA found a shortest path to the goal for all
test cases.

Sokoban. Sokoban30 is a planning problem that requires an agent
to move boxes onto target locations. Boxes can only be pushed,
not pulled. Note that training states are generated by pulling boxes
instead of pushing them (see Methods for more details). To test our
method on Sokoban, we train on the 900,000 training examples and
test on the 1,000 testing examples used by previous research on a
single-agent policy tree search applied to Sokoban31. DeepCubeA
successfully solves 100% of all test examples. We compare the solu-
tion length and number of nodes expanded to this same previous
research32. Although the goals of the aforementioned paper are
slightly different from ours, DeepCubeA finds shorter paths than
previously reported methods and also expands, at least, three times
fewer nodes (Table 5).

F

F′

F′

F

R′

L

R′

L

F′

F

R′

L

L′

R

L′

R

F′

F

D

D′

R′

L

U

U′

U

U′

B

B′

B

B′

B′

B

U′

U

F

F′

U′

U

U′

U

R′

L
M

irr
or

ed
 s

ta
rt

s
M

irr
or

ed
 s

ta
rt

s

Fig. 4 | An example of symmetric solutions that DeepCubeA finds to
symmetric states. Conjugate triplets are indicated by green boxes. Note
that the last two conjugate triplets are overlapping.

Table 5 | Comparison of DeepCubeA with optimal solvers based on PDBs along the dimension of solution length, percentage of
optimal solutions, number of nodes generated, time taken to solve the problem and number of nodes generated per second

Puzzle Solver Length Percentage of optimal solutions No. of nodes Time taken (s) Nodes per second

Rubik’s cube PDBs7 – – – – –

PDBs+24 20.67 100.0 2.05 × 106 2.20 1.79 × 106

DeepCubeA 21.50 60.3 6.62 × 106 24.22 2.90 × 105

Rubik’s cubeh PDBs7 – – – – –

PDBs+24 26.00 100.0 2.41 × 1010 13,561.27 1.78 × 106

DeepCubeA 26.00 100.0 5.33 × 106 18.77 2.96 × 105

15 puzzle PDBs9 52.02 100.0 3.22 × 104 0.002 1.45 × 107

DeepCubeA 52.03 99.4 3.85 × 106 10.28 3.93 × 105

15 puzzleh PDBs9 80.00 100.0 1.53 × 107 0.997 1.56 × 107

DeepCubeA 82.82 17.65 2.76 × 107 69.36 3.98 × 105

24 puzzle PDBs9 89.41 100.0 8.19 × 1010 4,239.54 1.91 × 107

DeepCubeA 89.49 96.98 6.44 × 106 19.33 3.34 × 105

35 puzzle PDBs9 – – – – –

DeepCubeA 124.64 – 9.26 × 106 28.45 3.25 × 105

48 puzzle PDBs – – – – –

DeepCubeA 253.35 – 1.96 × 107 74.46 2.63 × 105

Lights Out DeepCubeA 24.26 100.0 1.14 × 106 3.27 3.51 × 105

Sokoban LevinTS32 39.80 – 6.60 × 103 – –

LevinTS(*)32 39.50 – 5.03 × 103 – –

LAMA32 51.60 – 3.15 × 103 – –

DeepCubeA 32.88 – 1.05 × 103 2.35 5.60 × 101

The datasets with an ‘h’ subscript are datasets containing the states that are furthest away from the goal state. PDBs+ refers to Rokicki’s PDB combined with knowledge of group theory24,25. For Sokoban, we
compare nodes expanded instead of nodes generated to allow for a direct comparison to previous work. DeepCubeA often finds a shortest path to the goal. For the states that are furthest away from the
goal, DeepCubeA either finds a shortest path or a path close in length to a shortest path.

Nature Machine Intelligence | VOL 1 | AUGUST 2019 | 356–363 | www.nature.com/natmachintell360

http://www.nature.com/natmachintell

ArticlesNATuRe MAChine InTeLLigenCe

Discussion
DeepCubeA is able to solve planning problems with large state spaces
and few goal states by learning a cost-to-go function, parameterized
by a DNN, which is then used as a heuristic function for weighted
A* search. The cost-to-go function is learned by using approximate
value iteration on states generated by starting from the goal state
and taking moves in reverse. DeepCubeA’s success in solving the
problems investigated in this Article suggests that DeepCubeA can
be readily applied to new problems given an input representation,
a state transition model, a goal state and a reverse state transition
model that can be used to adequately explore the state space.

With a heuristic function that never overestimates the cost of a
shortest path (that is, an admissible heuristic function), weighed
A* search comes with known bounds on how much the length
of a solution can deviate from the length of an optimal solution.
Although DeepCubeA’s heuristic function is not guaranteed to be
admissible, and thus does not satisfy the requirement for these theo-
retical bounds, DeepCubeA nevertheless finds a shortest path to the
goal in the majority of cases (see Methods for more details).

The generality of the core algorithm suggests that it may have
applications beyond combinatorial puzzles, as problems with large
state spaces and few goal states are not rare in planning, robotics
and the natural sciences.

Methods
The Rubik’s cube. The 3 × 3 × 3 Rubik’s cube consists of smaller cubes called
cubelets. These are classified by their sticker count: centre, edge and corner cubelets
have 1, 2 and 3 stickers, respectively. The Rubik’s cube has 26 cubelets with 54
stickers in total. The stickers have colours and there are six colours, one per face.
In the solved state, all stickers on each face of the cube are the same colour. Given
that the set of stickers on each cubelet is unique (that is, there is only one cubelet
with white, red and green stickers), the 54 stickers themselves can be uniquely
identified in any legal configuration of the Rubik’s cube. The representation given
to the DNN encodes the colour of each sticker at each location using a one-hot
encoding. As there are six possible colours and 54 stickers in total, this results in a
state representation of size 324.

Moves are represented using face notation: a move is a letter stating which face
to rotate. F, B, L, R, U and D correspond to turning the front, back, left, right, up
and down faces, respectively. Each face name is in reference to a fixed front face. A
clockwise rotation is represented with a single letter, whereas a letter followed by an
apostrophe represents an anticlockwise rotation. For example: R rotates the right
face by 90° clockwise, while R′ rotates it by 90° anticlockwise.

The Rubik’s cube state space has 4.3 × 1019 possible states. Any valid Rubik’s
cube state can be optimally solved with at most 26 moves in the quarter-turn
metric, or 20 moves in the half-turn metric22,25. The quarter-turn metric treats 180°
rotations as two moves, whereas the half-turn metric treats 180° rotations as one
move. We use the quarter-turn metric.

Additional combinatorial puzzles. Sliding puzzles. Another combinatorial puzzle
we use to test DeepCubeA is the n-piece sliding puzzle. In the n puzzle, n square
sliding tiles, numbered from 1 to n, are positioned in a square of length +n 1,
with one empty tile position. Thus, the 15 puzzle consists of 15 tiles in a 4 × 4 grid,
the 24 puzzle consists of 24 tiles in a 5 × 5 grid, the 35 puzzle consists of 35 tiles in
a 6 × 6 grid and the 48 puzzle consists of 48 tiles in a 7 × 7 grid. Moves are made by
swapping the empty position with any tile that is horizontally or vertically adjacent
to it. For both puzzles, the representation given to the neural network uses one-hot
encoding to specify which piece (tile or blank position) is in each position. For
example, the dimension of the input to the neural network for the 15 puzzle would
be 16 * 16 = 256. The 15 puzzle has 16!/2 ≈ 1.0 × 1013 possible states, the 24 puzzle
has 25!/2 ≈ 7.7 × 1024 possible states, the 35 puzzle has 36!/2 ≈ 1.8 × 1041 possible
states and the 48 puzzle has 49!/2 ≈ 3.0 × 1062 possible states. Any valid 15 puzzle
configuration can be solved with at most 80 moves33,34. The largest minimal numbers
of moves required to solve the 24 puzzle, 35 puzzle and 48 puzzle are not known.

Lights Out. Lights Out contains N2 lights on an N × N board. The lights can either
be on or off. The representation given to the DNN is a vector of size N2. Each
element is 1 if the corresponding light is on and 0 if the corresponding light is off.

Sokoban. The Sokoban environment we use is a 10 × 10 grid that contains four
boxes that an agent needs to push onto four targets. In addition to the agent, boxes
and targets, Sokoban also contains walls. The representation given to the DNN
contains four binary vectors of size 102 that represent the position on the agent,
boxes, targets and walls. Given that boxes can only be pushed, not pulled, some
actions are irreversible. For example, a box pushed into a corner can no longer be

moved, creating a sampling problem because some states are unreachable when
starting from the goal state. To address this, for each training state, we start from
the goal state and allow boxes to be pulled instead of pushed.

Deep approximate value iteration. Value iteration15 is a dynamic programming
algorithm14,16 that iteratively improves a cost-to-go function J. In traditional value
iteration, J takes the form of a lookup table where the cost-to-go J(s) is stored in a
table for all possible states s. Value iteration loops through each state s and updates
J(s) until convergence:

∑ γ← ′ ′ + ′
′

J s P s s g s s J s() min (,)((,) ()) (3)a
s

a a

Here Pa(s, s′) is the transition matrix representing the probability of transitioning
from state s to state s′ by taking action a; ga(s, s′) is the cost associated with
transitioning from state s to s′ by taking action a; γ is the discount factor. In
principle, this update equation can also be applied to the puzzles investigated in
this Article. However, as these puzzles are deterministic, the transition function is a
degenerate probability mass function for each action, simplifying equation (3).
Furthermore, because we wish to assign equal importance to all costs, γ = 1.
Therefore, we can update J(s) using equation (1).

However, given the size of the state space of the Rubik’s cube, maintaining a
table to store the cost-to-go of each state is not feasible. Therefore, we resort to
approximate value iteration16. Instead of representing the cost-to-go function as
a lookup table, we approximate the cost-to-go function using a parameterized
function jθ, with parameters θ. This function is implemented using a DNN.
Therefore, we call the resulting algorithm DAVI:
Algorithm 1: DAVI.
Input:

  B: Batch size
  K: Maximum number of scrambles
  M: Training iterations
  C: How often to check for convergence
  ϵ: Error threshold

Output:
  θ: Trained neural network parameters

θ ← initialize_parameters()
θe ← θ
for m = 1 to M do

X ← get_scrambled_states(B, K)
for xi ∈ X do
  ← + θy g x A x a j A x amin ((, (,)) ((,)))i a

a
i i ie  θ ← θj X y, loss train(, ,)

  if (M mod C = 0) and (ϵ<loss) then
  θe ← θ

Return θ
To train the DNN, we have two sets of parameters: the parameters being

trained, θ, and the parameters used to obtain an improved estimate of the cost-
to-go, θe. The output of

θj s()
e

 is set to 0 if s is the goal state. The DNN is trained to
minimize the mean squared error between its estimation of the cost-to-go and the
estimation obtained from equation (1). Every C iterations, the algorithm checks if
the error falls below a certain threshold ϵ; if so, then θe is set to θ. The entire DAVI
process is shown in Algorithm 1. Although we tried updating θe at each iteration,
we found that the performance saturated after a certain point and sometimes
became unstable. Updating θe only after the error falls below a threshold ϵ yields
better, more stable, performance.

Training set state distribution. For learning to occur, we must train on a state
distribution that allows information to propagate from the goal state to all the
other states seen during training. Our approach for achieving this is simple: each
training state xi is obtained by randomly scrambling the goal state ki times, where ki
is uniformly distributed between 1 and K. During training, the cost-to-go function
first improves for states that are only one move away from the goal state. The
cost-to-go function then improves for states further away as the reward signal is
propagated from the goal state to other states through the cost-to-go function. This
can be seen as a simplified version of prioritized sweeping35. Exploring in reverse
from the goal state is a well-known technique and has been used in means-end
analysis36 and STRIPS37. In future work we will explore different ways of generating
a training set distribution.

Distributed training. In the Rubik’s cube environment, there are 12 possible actions
that can be applied to every state. Using equation (1) to update the cost-to-go
estimate of a single state thus requires applying the DNN to 12 states. As a result,
equation (1) takes up the majority of the computational time. However, as is the
case with methods such as ExIt38, this is a trivially parallelizable task that can easily
be distributed across multiple GPUs.

BWAS. A* search17 is a heuristic-based search algorithm that finds a path between
a starting node xs and a goal node xg. A* search maintains a set, OPEN, from which
it iteratively removes and expands the node with the lowest cost. The cost of each
node x is determined by the function f(x) = g(x) + h(x), where g(x) is the path cost

Nature Machine Intelligence | VOL 1 | AUGUST 2019 | 356–363 | www.nature.com/natmachintell 361

http://www.nature.com/natmachintell

Articles NATuRe MAChine InTeLLigenCe

(the distance between xs and x) and h(x) is the heuristic function, which estimates
the distance between x and xg. After a node is expanded, that node is then added
to another set, CLOSED, and its children that are not already in CLOSED are
added to OPEN. The algorithm starts with only the starting node in OPEN and
terminates when the goal node is removed from OPEN.

In this application, each node corresponds to a state of the Rubik’s cube and
the goal node corresponds to the goal state shown in Fig. 1. The path cost of every
child of a node x is set to g(x) + 1. The path cost of xs is 0. The heuristic function
h(x) is obtained from the learned cost-to-go function shown in equation (2).

A variant of A* search, called weighted A* search19, trades potentially longer
solutions for potentially less memory usage. In this case, the function f(x) is
modified to f(x) = λg(x) + h(x), with weight λ ∈ [0, 1]. While decreasing the weight
λ will not necessarily decrease the number of nodes generated39, in practice our
experiments show that decreasing λ generally reduces the number of nodes
generated and increases the length of the solutions found. In our implementation,
if we encounter a node x that is already in CLOSED, and if x has a lower path cost
than the node that is already in CLOSED, we remove that node from CLOSED and
add x to OPEN.

The most time-consuming aspect of the algorithm is the computation of the
heuristic h(x). The heuristic of many nodes can be computed in parallel across
multiple GPUs by expanding the N best nodes from OPEN at each iteration.
Our experiments show that larger values of N generally lead to shorter solutions
and evaluate more nodes per second than searches with smaller N. We call the
combination of A* search with a path-cost weight λ and a batch size of N ‘BWAS’.

To satisfy the theoretical bounds on how much the length of a solution
will deviate from the length of an optimal solution, the heuristic used in the
weighted A* search must be admissible. That is to say that the heuristic can never
overestimate the cost to reach the goal. Although DeepCubeA’s value function is
not admissible, we empirically evaluate by how much DeepCubeA overestimates
the cost to reach the goal. To do this, we obtain the length of a shortest path to the
goal for 100,000 Rubik’s cube states scrambled between 1 and 30 times. We then
evaluate those same states with DeepCubeA’s heuristic function jθ. We find that
DeepCubeA’s heuristic function does not overestimate the cost to reach the goal
66.8% of the time and 97.4% of the time it does not overestimate it by more than
one. The average overestimation of the cost is 0.24.

Neural network architecture. The first two hidden layers of the DNNs have sizes
of 5,000 and 1,000, respectively, with full connectivity. These are then followed
by four residual blocks27, where each residual block has two hidden layers of size
1,000. Finally, the output layer consists of a single linear unit representing the cost-
to-go estimate (Supplementary Fig. 3). We used batch normalization40 and rectified
linear activation functions41 in all hidden layers. The DNN was trained with a batch
size of 10,000, optimized with ADAM42, and did not use any regularization. The
maximum number of random moves applied to any training state K was set to 30.
The error threshold ε was set to 0.05. We checked if the loss fell below the error
threshold every 5,000 iterations. Training was carried out for 1 million iterations
on two NVIDIA Titan V GPUs, with six other GPUs used in parallel for data
generation. In total, the DNN saw 10 billion examples during training. Training
was completed in 36 h. When solving scrambled cubes from the test set, we use
four NVIDIA X Pascal GPUs in parallel to compute the cost-to-go estimate. For
the 15 puzzle, 24 puzzle and Lights Out we set K to 500. For the 35 puzzle, 48
puzzle and Sokoban we set K to 1,000. For the 24 puzzle we use six residual blocks
instead of four.

Comparison to multi-step lookahead update strategies. Instead of using
equation (1), which may be seen as a depth-1 breadth-first search (BFS), to update
the estimated cost-to-go function we experimented with a depth-2 BFS. To obtain
a better perspective on how well DeepCubeA’s learning procedure trains the given
DNN, we also implemented an update strategy of trying to directly imitate the
optimal cost-to-go function calculated using the handmade optimal solver25 by
minimizing the mean squared error between the output of the DNN and the oracle
value provided by the optimal solver. We demonstrate that the DNN trained with
DAVI achieves the same performance as a DNN with the same architecture trained
with these update strategies. The performance obtained from a depth-2 BFS
update strategy is shown in Supplementary Fig. 1. Although the final performance
obtained with depth-2 BFS is similar to the performance obtained with depth-1
BFS, its computational cost is significantly higher. Even when using 20 GPUs in
parallel for data generation (instead of six), the training time is five times longer for
the same number of iterations. Supplementary Fig. 2 shows that the DNN trained
to imitate the optimal cost-to-go function predicts the optimal cost-to-go more
accurately than DeepCubeA for states scrambled 20 or more times. The figure
also shows the performance on solving puzzles using a greedy best-first search with
this imitated cost-to-go function suffers for states scrambled fewer than 20 times.
We speculate that this is because imitating the optimal cost-to-go function causes
the DNN to overestimate the cost to reach the goal for states scrambled fewer than
20 times.

Hyperparameter selection for BWAS. To choose the hyperparameters of BWAS,
we carried out a grid search over λ and N. Values of λ were 0.0, 0.2, 0.4, 0.6, 0.8 and

1.0 and values of N were 1, 100, 1,000 and 10,000. The grid search was performed
on 100 cubes that were generated separately from the test set. The GPU machines
available to us had 64 GB of RAM. Hyperparameter configurations that reached
this limit were stopped early and thus not included in the results. Supplementary
Fig. 4 shows how λ and N affect performance in terms of average solution length,
average number of nodes generated, average solve time and average number of
nodes generated per second. The figure shows that as λ increases, the average
solution length decreases; however, the time to find a solution typically increases as
well. The results also show that larger values of N lead to shorter solution lengths,
but generally also require more time to find a solution; however, the number of
nodes generated per second also increases due to the parallelism provided by the
GPUs. Because λ = 0.6 and N = 10,000 resulted in the shortest solution lengths,
we use these hyperparameters for the Rubik’s cube. For the 15 puzzle, 24 puzzle
and 35 puzzle we use λ = 0.8 and N = 20,000. For the 48 puzzle we use λ = 0.6 and
N = 20,000. We increased N from 10,000 to 20,000 because we saw a reduction in
solution length. For Lights Out we use λ = 0.2 and N = 1,000. For Sokoban we use
λ = 0.8 and N = 1.

PDBs. PDBs26 are used to obtain a heuristic using lookup tables. Each lookup
table contains the number of moves required to solve all possible combinations of
a certain subgoal. For example, we can obtain a lookup table by enumerating all
possible combinations of the edge cubelets on the Rubik’s cube using a BFS. These
lookup tables are then combined through either a max operator or a sum operator
(depending on independence between subgoals)7,8 to produce a lower bound on
the number of steps required to solve the problem. Features from different PDBs
can be combined with neural networks for improved performance43.

For the Rubik’s cube, we implemented the PBD that Korf uses to find optimal
solutions to the Rubik’s cube7. For the 15 puzzle, 24 puzzle and 35 puzzle, we
implement the PDBs described in Felner and other’s work on additive PDBs9. To
the best of our knowledge, no-one has created a PDB for the 48 puzzle. We create
our own by partitioning the puzzle into nine subgoals of size 5 and one subgoal of
size 3. For all the n puzzles, we also save the mirror of each PDB to improve the
heuristic and map each lookup table to a representation of size pk where p is the
total number of puzzle pieces and k is the size of the subgoal. Although this uses
more memory, this is done to increase the speed of the lookup table9. For the n
puzzle, the optimal solver algorithm (IDA*23) adds an additional optimization by
only computing the location of the beginning state in the lookup table and then
only computing offsets for each subsequently generated state.

Web server. We have created a web server, located at http://deepcube.igb.uci.edu/,
to allow anyone to use DeepCubeA to solve the Rubik’s cube. In the interest of
speed, the hyperparameters for BWAS are set to λ = 0.2 and N = 100 in the server.
The user can initiate a request to scramble the cube randomly or use the keyboard
keys to scramble the cube as they wish. The user can then use the ‘solve’ button
to have DeepCubeA compute and post a solution, and execute the corresponding
moves. The basic web server’s interface is displayed in Supplementary Fig. 5.

Conjugate patterns and symmetric states. Because the operation of the Rubik’s
cube is deeply rooted in group theory, solutions produced by an algorithm
that learns how to solve this puzzle should contain group theory properties. In
particular, conjugate patterns of moves of the form aba−1 should appear relatively
often when solving the Rubik’s cube. These patterns are necessary for manipulating
specific cubelets while not affecting the positions of other cubelets. Using a sliding
window, we gathered all triplets in all solutions to the Rubik’s cube and found that
aba−1 accounted for 13.11% of all triplets (significantly above random), while aba
accounted for 8.86%, aab accounted for 4.96% and abb accounted for 4.92%. To put
this into perspective, for the optimal solver, aba−1, aba, aab and abb accounted for
9.15, 9.63, 5.30 and 5.35% of all triplets, respectively.

In addition, we found that DeepCubeA often found symmetric solutions to
symmetric states. One can produce a symmetric state for the Rubik’s cube by
mirroring the cube from left to right, as shown in Fig. 4. The optimal solutions
for two symmetric states have the same length; furthermore, one can use the
mirrored solution of one state to solve the other. To see if this property was present
in DeepCubeA, we created mirrored states of the Rubik’s cube test set and solved
them using DeepCubeA. The results showed that 58.30% of the solutions to the
mirrored test set were symmetric to those of the original test set. Of the solutions
that were not symmetric, 69.54% had the same solution length as the solution
length obtained on the original test set. To put this into perspective, for the
handmade optimal solver, the results showed that 74.50% of the solutions to the
mirrored test set were symmetric to those of the original test set.

Data availability
The environments for all puzzles presented in this paper, code to generate labelled
training data and initial states used to test DeepCubeA are available through a
Code Ocean compute capsule (https://doi.org/10.24433/CO.4958495.v1)44.

Received: 23 January 2019; Accepted: 7 June 2019;
Published online: 15 July 2019

Nature Machine Intelligence | VOL 1 | AUGUST 2019 | 356–363 | www.nature.com/natmachintell362

http://deepcube.igb.uci.edu/
https://doi.org/10.24433/CO.4958495.v1
http://www.nature.com/natmachintell

ArticlesNATuRe MAChine InTeLLigenCe

References
	1.	 Lichodzijewski, P. & Heywood, M. in Genetic Programming Theory and

Practice VIII (eds Riolo, R., McConaghy, T. & Vladislavleva, E.) 35–54
(Springer, 2011).

	2.	 Smith, R. J., Kelly, S. & Heywood, M. I. Discovering Rubik’s cube subgroups
using coevolutionary GP: a five twist experiment. In Proceedings of the Genetic
and Evolutionary Computation Conference 2016 789–796 (ACM, 2016).

	3.	 Brunetto, R. & Trunda, O. Deep heuristic-learning in the Rubik’s cube
domain: an experimental evaluation. Proc. ITAT 1885, 57–64 (2017).

	4.	 Johnson, C. G. Solving the Rubik’s cube with learned guidance functions. In
Proceedings of 2018 IEEE Symposium Series on Computational Intelligence
(SSCI) 2082–2089 (IEEE, 2018).

	5.	 Korf, R. E. Macro-operators: a weak method for learning. Artif. Intell. 26,
35–77 (1985).

	6.	 Arfaee, S. J., Zilles, S. & Holte, R. C. Learning heuristic functions for large
state spaces. Artif. Intell. 175, 2075–2098 (2011).

	7.	 Korf, R. E. Finding optimal solutions to Rubik’s cube using pattern databases.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence
and Ninth Conference on Innovative Applications of Artificial Intelligence
700–705 (AAAI Press, 1997); http://dl.acm.org/citation.
cfm?id=1867406.1867515

	8.	 Korf, R. E. & Felner, A. Disjoint pattern database heuristics. Artif. Intell. 134,
9–22 (2002).

	9.	 Felner, A., Korf, R. E. & Hanan, S. Additive pattern database heuristics.
J. Artif. Intell. Res. 22, 279–318 (2004).

	10.	Bonet, B. & Geffner, H. Planning as heuristic search. Artif. Intell. 129,
5–33 (2001).

	11.	Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw.
61, 85–117 (2015).

	12.	Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning Vol. 1
(MIT Press, 2016).

	13.	Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction Vol. 1
(MIT Press, 1998).

	14.	Bellman, R. Dynamic Programming (Princeton Univ. Press, 1957).
	15.	Puterman, M. L. & Shin, M. C. Modified policy iteration algorithms for

discounted Markov decision problems. Manage. Sci. 24, 1127–1137 (1978).
	16.	Bertsekas, D. P. & Tsitsiklis, J. N. Neuro-dynamic Programming (Athena

Scientific, 1996).
	17.	Hart, P. E., Nilsson, N. J. & Raphael, B. A formal basis for the heuristic

determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4,
100–107 (1968).

	18.	Pohl, I. Heuristic search viewed as path finding in a graph. Artif. Intell. 1,
193–204 (1970).

	19.	Ebendt, R. & Drechsler, R. Weighted A* search—unifying view and
application. Artif. Intell. 173, 1310–1342 (2009).

	20.	McAleer, S., Agostinelli, F., Shmakov, A. & Baldi, P. Solving the Rubik’s cube
with approximate policy iteration. Proceedings of International Conference on
Learning Representations (ICLR) (PMLR, 2019).

	21.	Silver, D. et al. A general reinforcement learning algorithm that masters chess,
shogi and Go through self-play. Science 362, 1140–1144 (2018).

	22.	Rokicki, T. God’s Number is 26 in the Quarter-turn Metric http://www.cube20.
org/qtm/ (2014).

	23.	Korf, R. E. Depth-first iterative-deepening: an optimal admissible tree search.
Artif. Intell. 27, 97–109 (1985).

	24.	Rokicki, T. cube20 https://github.com/rokicki/cube20src (2016).
	25.	Rokicki, T., Kociemba, H., Davidson, M. & Dethridge, J. The diameter of the

Rubik’s cube group is twenty. SIAM Rev. 56, 645–670 (2014).
	26.	Culberson, J. C. & Schaeffer, J. Pattern databases. Comput. Intell. 14,

318–334 (1998).
	27.	He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image

recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition 770–778 (IEEE, 2016).

	28.	Kociemba, H. 15-Puzzle Optimal Solver http://kociemba.org/themen/fifteen/
fifteensolver.html (2018).

	29.	Scherphuis, J. The Mathematics of Lights Out https://www.jaapsch.net/puzzles/
lomath.htm (2015).

	30.	Dor, D. & Zwick, U. Sokoban and other motion planning problems. Comput.
Geom. 13, 215–228 (1999).

	31.	Guez, A. et al. An Investigation of Model-free Planning: Boxoban Levels https://
github.com/deepmind/boxoban-levels/ (2018).

	32.	Orseau, L., Lelis, L., Lattimore, T. & Weber, T. Single-agent policy tree search
with guarantees. In Advances in Neural Information Processing Systems
(eds Bengio, S. et al.) 3201–3211 (Curran Associates, 2018).

	33.	Brüngger, A., Marzetta, A., Fukuda, K. & Nievergelt, J. The parallel search
bench ZRAM and its applications. Ann. Oper. Res. 90, 45–63 (1999).

	34.	Korf, R. E. Linear-time disk-based implicit graph search. JACM 55,
26 (2008).

	35.	Moore, A. W. & Atkeson, C. G. Prioritized sweeping: reinforcement learning
with less data and less time. Mach. Learn. 13, 103–130 (1993).

	36.	Newell, A. & Simon, H. A. GPS, a Program that Simulates Human Thought
Technical Report (Rand Corporation, 1961).

	37.	Fikes, R. E. & Nilsson, N. J. STRIPS: a new approach to the application of
theorem proving to problem solving. Artif. Intell. 2, 189–208 (1971).

	38.	Anthony, T., Tian, Z. & Barber, D. Thinking fast and slow with deep learning
and tree search. In Advances in Neural Information Processing Systems
(eds Guyon, I. et al.) 5360–5370 (Curran Associates, 2017).

	39.	Wilt, C. M. & Ruml, W. When does weighted A* fail? In Proc. SOCS (eds
Borrajo, D. et al.) 137–144 (AAAI Press, 2012).

	40.	Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network
training by reducing internal covariate shift. In Proceedings of International
Conference on Machine Learning (eds Bach, F. & Blei, D.) 448–456
(PMLR, 2015).

	41.	Glorot, X., Bordes, A. & Bengio, Y. Deep sparse rectifier neural networks.
In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics (eds Gordon, G., Dunson, D. & Dudík, M.)
315–323 (PMLR, 2011).

	42.	Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In
Proceedings of International Conference on Learning Representations (ICLR)
(eds Bach, F. & Blei, D.) (PMLR, 2015).

	43.	Samadi, M., Felner, A. & Schaeffer, J. Learning from multiple heuristics.
In Proceedings of the 23rd National Conference on Artificial Intelligence
(ed. Cohn, A.) (AAAI Press, 2008).

	44.	Agostinelli, F., McAleer, S., Shmakov, A. & Baldi, P. Learning to Solve the
Rubiks Cube (Code Ocean, 2019); https://doi.org/10.24433/CO.4958495.v1

Acknowledgements
The authors thank D.L. Flores for useful suggestions regarding the DeepCubeA server
and T. Rokicki for useful suggestions and help with the optimal Rubik’s cube solver.

Author contributions
P.B. designed and directed the project. F.A., S.M. and A.S. contributed equally to the
development and testing of DeepCubeA. All authors contributed to writing and editing
the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s42256-019-0070-z.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to P.B.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

Nature Machine Intelligence | VOL 1 | AUGUST 2019 | 356–363 | www.nature.com/natmachintell 363

http://dl.acm.org/citation.cfm?id=1867406.1867515
http://dl.acm.org/citation.cfm?id=1867406.1867515
http://www.cube20.org/qtm/
http://www.cube20.org/qtm/
https://github.com/rokicki/cube20src
http://kociemba.org/themen/fifteen/fifteensolver.html
http://kociemba.org/themen/fifteen/fifteensolver.html
https://www.jaapsch.net/puzzles/lomath.htm
https://www.jaapsch.net/puzzles/lomath.htm
https://github.com/deepmind/boxoban-levels/
https://github.com/deepmind/boxoban-levels/
https://doi.org/10.24433/CO.4958495.v1
https://doi.org/10.1038/s42256-019-0070-z
https://doi.org/10.1038/s42256-019-0070-z
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Solving the Rubik’s cube with deep reinforcement learning and search

	Deep approximate value iteration

	Batch weighted A* search

	Results

	Performance.
	Generalization to other combinatorial puzzles.
	Sliding tile puzzles
	Lights Out
	Sokoban

	Discussion

	Methods

	The Rubik’s cube
	Additional combinatorial puzzles
	Sliding puzzles
	Lights Out
	Sokoban

	Deep approximate value iteration
	Training set state distribution
	Distributed training

	BWAS
	Neural network architecture
	Comparison to multi-step lookahead update strategies
	Hyperparameter selection for BWAS
	PDBs
	Web server
	Conjugate patterns and symmetric states

	Acknowledgements

	Fig. 1 Visualization of scrambled states and goal states.
	Fig. 2 The performance of DeepCubeA versus PDBs when solving the Rubik’s cube with BWAS.
	Fig. 3 The performance of DeepCubeA.
	Fig. 4 An example of symmetric solutions that DeepCubeA finds to symmetric states.
	Table 1 Comparison of DeepCubeA with optimal solvers based on PDBs along the dimension of solution length, percentage of optimal solutions, number of nodes generated, time taken to solve the problem and number of nodes generated per second on the Rubik’s
	Table 2 Comparison of the size (in GB) of the lookup tables for pattern PDBs and the size of the DNN used by DeepCubeA.
	Table 3 A suggestive comparison of the speed (in seconds) of the lookup tables for PDBs and the speed of the DNN used by DeepCubeA when computing the heuristic for a single state.
	Table 4 Comparison of DeepCubeA with optimal solvers based on PDBs along the dimension of solution length, percentage of optimal solutions, number of nodes generated, time taken to solve the problem and number of nodes generated per second for the 24 puzz
	Table 5 Comparison of DeepCubeA with optimal solvers based on PDBs along the dimension of solution length, percentage of optimal solutions, number of nodes generated, time taken to solve the problem and number of nodes generated per second.

